
Statistical Physics

Permutations and Combinations
gives the number of ways n objects can fit in r boxes if each
object is identifiable and the order is important.

gives the number of ways n objects can fit in r boxes if the
objects are not identifiable or the order doesn't matter.

Stirling's Approximation, I've already used this for Stats
Stirling's Approximation lets us deal with factorials in equations,

ln N !≈N ln N−N , For large N 

What are degeneracies? (check this explanation)
Sometimes there are different states that occupy the same energy. The number of
different states occupying one energy is called the degeneracy.
For example;
If we group electrons by energy we have a set of states with different energies
n1 , n2 , n3 ... , but each state is made up of two electrons (one spin up and one

spin down) therefore the number of degeneracies is two and g j=2

Counting Particles
I find this very confusing but it is very important. First of all, the number of
possible arrangements of anything is given the greek letter omega,  .
REAL PARTICLES ARE ALMOST ALWAYS INDISTINGUISHABLE 

1. Distinguishable objects without boxes
If you have N objects how many ways can you arrange them if order matters?
=N !

2. Distinguishable objects in boxes
If you have N objects how many different ways can you sort them into r boxes
with n j  particles in each box, the order of the particles in one box doesn't
matter, the particles are distinguishable?
Obviously the numbers of particles in all the boxes must add up to the total
number of particles, N. 

N=∑
j=0

r

n j

The number of different arrangements of particles for this setup is

=N ! 1
n0 !×n1 !×n2 !×...nr !

=N ! 1
∏
j
n j !

when we consider degeneracies we have to multiply by the number of
degeneracies for each box so 

=N !∏
j  g j

n j

n j !
I agree with this but can't explain why the degeneracy factor is g j

ns

3. Indistinguishable objects in boxes (think of electrons in energy levels)
We find that if the particles are indistinguishable the number of microstates is
reduced.

=∏
j  g j

n j

n j !
Boltzmann Entropy
S=k B ln

I doubt it's very important but in one problem sheet we have to calculate the
entropy from the Helmholtz Free Energy. This is a pretty simple thing to do in
thermodynamics and gives

S=−∂ F∂T V
The partition function Z
Z=∑

j
e j for a system without degeneracies g j=1

Z=∑
j
g j e

 j
for a system with degeneracies 

What is the partition function?
I've defined the partition function mathematically but what does it mean? It is not

Pr
n = n!

n−r !

C r
n = n!

r ! n−r !



a purely mathematical tool like   just to scale the distribution, it is a more
subtle and powerful parameter.
The particles in a distribution are split up into energy boxes in the same ratios as
the partition function is split up.
SURELY THERE ARE BETTER WAYS TO EXPLAIN THIS??? 

The Boltzmann Distribution (describes distinguishable, weakly interacting
particles)
If we know the temperature of a system and the number of particles in it the
Boltzmann distribution tells us how many particles will have a given energy.

n j=g j e
 j where =

−1
k BT

Alpha is the same for all energy levels and is simply a normalisation factor so
that the Boltzmann distribution describes the correct number of particles. In fact
we can rewrite the constant alpha in terms of N and Z =N /Z
The best form of the Boltzmann equation is thus

n j=
N
Z
g j e

 j

Crazy Approximations
It's in one of the problem sheets, it kind of works. Actually I like it.
e x−1=x for x≪1

the two blue lines are y=e x  and y=x  , the red line is the difference

f(x)=e^x -1

f(x)=x

f(x)=(e^x - 1 )-x
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Helmholtz Free energy

The Helmholtz Free Energy tells us the maximum work that can be done be a gas
without it changing tempterature.
From Thermodynamics we can remember that the Free Energy (F) is defined as,
F=U−TS

For distinguishable particles in statistical physics it is given by
F=−N k BT ln Z

This link between thermodynamics and statistical physics means this equation is
sometimes called the Bridge Equation.
For indistinguishable particles this equation is slightly different,

F=k BT ln Z NN !
Dealing with Product Signs
The product sign  could be a real pain to deal with mathematically.

∏
j
n j=n0×n1×n2×...

But it's not actually impossible as long as we deal with logs,
ln∏

j
n j=ln n0×n1×n2×...=ln n0ln n1lnn2...=∑

j
ln n j

along with Stirling's Approximation,
ln∏

j
n j !=∑

j
ln n j !=∑

j
n j ln n j−n j

Chemical Potential
Chemical Potential is dealth with much more completely in the Electrons in
Solids course. It is defined as the Gibbs Free Energy per particle,
=G /N

We can express all the three follwing distributions in terms of chemical potential
by making the substitution
= k BT

The Pauli exclusion Principle
You are absolutely joking? You don't know about the principle? Get out of town.
Okay..... the PEP says that no two fermions can occupy the same energy level.
Simple as that. You can't have two electrons at the same energy level around an
atom, just can't have have it, won't happen, nope. You kind of can because a spin



up and a spin down electron can occupy the same energy state but they're
degeneracies within an energy level, that's why we define degeneracies. If there
wasn't a reason we wouldn't have defined degeneracies would we? Well actually
there are other reasons for degeneracies but this is definetly one of the, and it's a
great reason.........
EiS uses PEP a lot w.r.t the Fermi Level (FE) of a metal, check it out, IMHO and
FYO, I'm LMAO that you're still reading this, LOL.

The Three Distributions,
In the ancient times there were three distributions on the face of the Earth. Each
its own land, each its own lifestyle. The Fermi-Dirac distribution dealt with
collections of fermions and the laws stated that no two fermions could share the
same plot of land. The Bose-Einstein distribution dealt with collections of
Bosons which could share plots of land. The mysterious Maxwell-Boltzmann
Distribution dealt with dilute gasses of fermions and bosons. Here there was so
much space that no-one could see another persons plot of land so they didn't even
need to consider sharing it or whether they were fermions or bosons.
M-B = distinguishable classical particles, do not obey the Pauli exclusion

Principle,
F-D = indistinguishable particles that obey the Pauli exclusion Principle,

B-E = indistinguishable particles that do obey the Pauli exclusion
Principle,

Number of Microstates in these distributions
Maxwell Boltzmann, this is shown in the counting section earlier

MB=∏
j  g j

n j

n j !
Fermi Dirac

FD=∏
k

gk !
N k ! gk – N k !

The energy levels are split it into bundles so they are more manageable. Each
bundle contains gk  members and N k is the population of the kth bundle

Bose Einstein

BE=∏
k

N kgk !
N k ! gk !

Deriving the Distribution Functions from the Number of Macrostates
We get the number of macrostates from the condition imposed on the paritlcles
(PEP and distinguishability). From the number of macrostates we  can calculate
the much more useful Distribution function, In order to do this we follow four
main steps
1. Take ln  of both sides to find ln
2. Remove factorials using Stirling's Approximation
3. Differentiate with respect to N k

4. Use the method of Lagrange multipliers to find the most probable distribution,
∂
∂N kln∑k N k∑

k
N k k=0

Distribution Functions

f FD =
nk
gk
= 1
e−−1

= 1
e−/k BT1

f BE =
nk
g k
= 1
e−−−1

= 1
e−/k BT−1

f MB=e
=e−/k BT

Note that sometimes we have to times these distributions by g  which is the
number of degeneracies at a given energy level.

Method of Lagrange Multipliers
Yeah well it's difficult. Haven't done it yet, probably never will. That's the thing
though isn't it. Life's a bitch and then you marry one.

Reduction of Quantum Distributions to the Maxwell-Boltzmann distribution
(HELP! HELP! HELP!)
Both of these distributions tend towards to the classical Maxwell-Boltzmann



distribution when energy states are sparcely populated; at low pressure and/or
high temperature.

Density of States
Basically in an atom the energy levels are quantised but they aren't spread out
evenly. Dealing with the positions of the energy levels is a pain in the arse but if
we have loads and loads of energy levels we can just deal with the density of the
energy levels and integrate rather than deal with each energy level and sum them
up. In order to do this we need define how the density of energy states changes
with energy. This is called the density of states and depends on the number of
dimensions of the problem. In EiS we write the density of states as D  , in
Statistical Physics we write as the number of degeneracies at a given point
(which makes sense) g  . Remember we've assumed there are so many
energy levels we can hardly distinguish them and thus we can integrate them
instead of adding them up. This means the degeneracies aren't integer numbers
like we might expect; they are more like weighting degeneracies and this part of
the subject is really hard to write down but not actually impossible to do.

Number of Particles and Internal Energy
The number of particles is quite simple, just add up all the particles
N=∑

j
n j

The internal energy is also quite simple, add up each particles times that particles
energy
U=∑

j
n j j

The more difficult bit is if you don't know each particles energy. Thankfully the
number of particles at a given energy is given by the product of the distribution
function at that energy and the density of states (or the degeneracy) at that
energy,
U=∑

j
g j f j j  

It really needs to be noted that for systems with smalls numbers of energy levels
or small numbers of particles or small number of anything we have to be careful
with these approximations. The distributions functions and the density of states
are all averages over large numbers. They are statistical ideals and need to be
used carefully. As long as we are careful we can use the continuum

approximation. This says that the sums are so small they might as well be
integrals.

Another Little Mathemagical Trick
Sometimes when you deal with very very very small numbers calculaters aren't
that much use, this little trick can very useful.
eN≈1N    when   N≪1

This comes from the Maclaurin Series expansion of e x

e x=1xx2x 3x 4... taken to first order

The rule can also be expressed as

ln1 1
N ≈ 1

N
, valid for very large N (ie 1/N is very large)

OR 
ln 1N ≈N , valid for very small N

Check up on the Lagrange Multiplier method for finding the most likely
arrangement, it sounds sexy as...


